Forecasting Distributed Generation

E2 Tech

Eric Wilkinson

Senior External Affairs Representative
Reliability is the Core of ISO New England’s Mission

Fulfilled by three interconnected and interdependent responsibilities

- Overseeing the day-to-day **operation** of New England’s electric power generation and transmission system
- Developing and administering the region’s competitive **wholesale electricity markets**
- Managing comprehensive regional power **system planning**
Overview

Distributed Generation (DG) is growing

The ISO is preparing for this growth

The ISO will account for future DG growth in planning studies
Definition of Distributed Generation

For forecasting purposes

- Typically 5 MW or less in nameplate capacity
- Interconnected to the distribution system
 - 69 kV or below
- Follow state-jurisdictional interconnection standards
- Installed either:
 - Behind a customer load (i.e., “behind-the-meter”) or;
 - Interconnected directly to the distribution system without a customer load present
Distributed Generation as Seen by ISO

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Capacity Market</td>
<td>• Have obligations</td>
</tr>
<tr>
<td></td>
<td>• Contribute to Installed Capacity Requirement</td>
</tr>
<tr>
<td></td>
<td>• Well understood</td>
</tr>
<tr>
<td>Settlement Only Resources</td>
<td>• Participate in energy markets</td>
</tr>
<tr>
<td></td>
<td>• Counted as load assets</td>
</tr>
<tr>
<td></td>
<td>• Understood</td>
</tr>
<tr>
<td>Other DG</td>
<td>• Existing DG that reduces load</td>
</tr>
<tr>
<td></td>
<td>• Embedded in historic loads used to forecast</td>
</tr>
<tr>
<td></td>
<td>• Not well understood</td>
</tr>
</tbody>
</table>
Development of the DG Forecast

• The ISO and its stakeholders identified the need to forecast future amounts of DG in New England

• To assist this process, the ISO created and chairs the Distributed Generation Forecast Working Group (DGFWG)
 – Open stakeholder group
 – Provides data and feedback

• Forecast to focus on solar photovoltaics (PV)
 – Largest sector of DG resources

• Forecast based primarily on state PV policy goals and funding
 – PV-related programs have thus far demonstrated success in achieving policy goals
ISO’s PV Data Collection

• Solicited information from New England states
 – To understand existing and future PV policy

• Distribution Utilities provided
 – Existing PV resources
 – Distribution queue information
 – DG technical interconnection requirements

• Distribution Utilities serving approximately 95% of the New England load responded!
Installed PV Capacity in New England
As of February 2014

CT 73 MW
VT 32 MW
NH 8 MW
MA 340 MW
RI 10 MW
ME 8 MW

Note: Cumulative numbers for each state are approximate and subject to change.
PV Forecast Development

- ISO estimated future PV growth based on state policy to determine gross future nameplate values
- Discounts applied to nameplate values
 - DC to AC conversion rate of 83% where appropriate
 - Application of Summer Seasonal Claimed Capability value
 - Discount factor to reflect uncertainty in PV policy achievement

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0% but must be confirmed via utility data</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>States</td>
<td>Annual Total MW (MW, AC nameplate rating)</td>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>73.1</td>
<td>51.4</td>
<td>46.4</td>
<td>66.4</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
</tr>
<tr>
<td>MA</td>
<td>361.6</td>
<td>187.2</td>
<td>138.1</td>
<td>138.1</td>
<td>131.6</td>
<td>131.6</td>
<td>131.6</td>
<td>131.6</td>
<td>131.6</td>
<td>131.6</td>
<td>1,752.8</td>
</tr>
<tr>
<td>ME</td>
<td>8.1</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>30.0</td>
</tr>
<tr>
<td>NH</td>
<td>8.2</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>35.4</td>
</tr>
<tr>
<td>RI</td>
<td>10.9</td>
<td>8.1</td>
<td>6.3</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>62.8</td>
</tr>
<tr>
<td></td>
<td>Annual Policy-Based MWs</td>
<td>493.6</td>
<td>274.5</td>
<td>211.9</td>
<td>223.3</td>
<td>198.6</td>
<td>192.1</td>
<td>148.7</td>
<td>148.7</td>
<td>17.1</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>Annual Post-Policy MWs</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.7</td>
<td>4.7</td>
<td>48.0</td>
<td>48.0</td>
<td>179.7</td>
<td>182.4</td>
</tr>
<tr>
<td></td>
<td>Annual Nondiscounted Total (MW)</td>
<td>493.6</td>
<td>274.5</td>
<td>211.9</td>
<td>223.3</td>
<td>203.3</td>
<td>196.7</td>
<td>196.7</td>
<td>196.7</td>
<td>196.7</td>
<td>196.7</td>
</tr>
<tr>
<td></td>
<td>Cumulative Nondiscounted Total (MW)</td>
<td>493.6</td>
<td>768.1</td>
<td>980.1</td>
<td>1,203.3</td>
<td>1,406.6</td>
<td>1,603.3</td>
<td>1,800.1</td>
<td>1,996.8</td>
<td>2,193.6</td>
<td>2,390.3</td>
</tr>
</tbody>
</table>

Discounted MWs

| | Total Discounted Annual | 493.6 | 247.1 | 180.1 | 178.6 | 150.1 | 145.2 | 123.5 | 123.5 | 57.7 | 56.4 | 49.7 | 1,805.6 |
| | Total Discounted Cumulative | 493.6 | 740.7 | 920.8 | 1,099.4 | 1,249.5 | 1,394.7 | 1,518.3 | 1,641.8 | 1,699.5 | 1,755.9 | 1,805.6 |

Final Summer SCC (MW) Based on 35% [Assume Winter SCC equal to zero]

| | Annual: Total Discounted SSCC (MW) | 172.8 | 86.5 | 63.0 | 62.5 | 52.5 | 50.8 | 43.2 | 43.2 | 20.2 | 19.7 | 17.4 | 632.0 |
| | Cumulative: Total Discounted SSCC (MW) | 172.8 | 259.2 | 322.3 | 384.8 | 437.3 | 488.2 | 531.4 | 574.6 | 594.8 | 614.6 | 632.0 |

Notes:
(1) Yellow highlighted cells indicate that values contain post-policy MWs
Use of the DG Forecast in System Planning

• Will appear in the 10-yr forecast of capacity, energy, loads and transmission (CELT) in May 2014

• ISO intends to use data from the DG forecast in the following types of analyses:
 – Transmission Needs Assessments
 – Transmission Solutions Studies
 – Proposed Plan Application Studies
 – System Impact Studies
Key Challenges of Large-Scale Adoption of DG

• Growing penetrations of DG could impact grid reliability
 – Regional interconnection standards for DG are generally consistent with IEEE Standard 1547™
 – IEEE 1547™ is a “don’t ride through” requirement
 – May lose significant amounts of DG after grid disturbance (if interconnected according to current IEEE standards)
 – Efforts are needed to improve state-jurisdictional interconnection
Distributed Generation Forecast Working Group

Regional forum for interested parties to provide input to ISO-NE concerning the distributed generation forecast.

2014 Distributed Generation Data Collection
- Agenda
- Materials

2013 Distributed Generation Data Collection
- Materials
- Minutes